1. Describe a single transformation that is a composition of the following pair of transformations: A translation \((x, y) \rightarrow (x - 5, y - 3)\) followed by a translation \((x, y) \rightarrow (x - 4, y - 2)\).

 - A translation \((x, y) \rightarrow (x - 1, y - 5)\)
 - B translation \((x, y) \rightarrow (x - 9, y - 5)\)
 - C translation \((x, y) \rightarrow (x - 9, y - 1)\)
 - D translation \((x, y) \rightarrow (x - 1, y - 1)\)

2. Reflect the figure below across the \(y\)-axis. What are the new coordinates of Point \(B\)?

 \(A\) \((-2, 2)\)
 \(B\) \((-2, -2)\)
 \(C\) \((-2, 1)\)
 \(D\) \((2, -2)\)

3. If you rotated \(\overline{AB}\) 90 degrees around Point \(A\) the same way the hands of a clock move, what would be the coordinates of Point \(A'\)?

 \(A\) \((-1, 0)\)
 \(B\) \((0, 0)\)
 \(C\) \((0, -1)\)
 \(D\) \((2, -1)\)

4. Which type of symmetry does the pear below have?

 - F rotational symmetry
 - G reflectional symmetry
 - H both
 - J neither
5. Which type of symmetry does the tennis racket have?

- A rotational symmetry
- B reflectional symmetry
- C both
- D neither

6. Which type of symmetry does the coffee mug below have?

- F rotational symmetry
- G reflectional symmetry
- H both
- J neither

7. A dilation has center (0, 0). What is the image of $H(-2, 4)$ for scale factor 1.5?

- A $H'(3, 6)$
- B $H'(-3, 6)$
- C $H'(-0.05, 5.5)$
- D $H'(-\frac{4}{3}, \frac{8}{3})$

8. N-scale model trains have a scale factor 1 : 160. An N-scale model engine measures 3.75 in. What is the length of the actual engine?

- F 163.75 in.
- G 60 in.
- H $42\frac{2}{3}$ ft
- J 600 in.

9. $P'Q'R'S'$ is a dilation of $PQRS$. Describe the dilation.

- A enlargement; center P; scale factor 2
- B enlargement; center O; scale factor 2
- C reduction; center P; scale factor $\frac{1}{2}$
- D reduction; center O; scale factor $\frac{1}{2}$

10. Find the glide reflection image of $P(4, 1)$ for the translation $(x, y) \rightarrow (x - 2, y + 2)$ and reflection across $x = 0$.

- F $P'(-2, 3)$
- G $P'(-6, 3)$
- H $P'(2, -3)$
- J $P'(0, 3)$
11. Identify the mapping of \(\triangle UVW \) to \(\triangle U'V'W' \).

A glide reflection; \((x, y) \rightarrow (x + 2, y); x = 0\)
B translation; \((x, y) \rightarrow (x + 4, y)\)
C reflection; \(x = 1\)
D rotation; center \((1, 1)\); \(\angle\) of rotation \(180^\circ\)

12. Which of the following mappings of is not the result of just a single rotation?

F OPEN
G OPEN
H OPEN
J OPEN

13. Which of the following polygons will not tessellate?

A triangle
B octagon
C parallelogram
D hexagon

14. Which of the following regular polygons can tessellate?

F heptagon
G nonagon
H hexagon
J decagon

15. Joey is planning to tile his bathroom floor. If he wants to construct a repeating pattern that will cover the floor without gaps or overlaps, which tile shape will always work?

A triangle
B hexagon
C pentagon
D heptagon

16. Arkansas is approximately the shape of a trapezoid with bases of 250 miles and 190 miles and a height of 242 miles. What is the approximate area of Arkansas?

F 26,620 square miles
G 53,240 square miles
H 106,405 square miles
J 5,747,500 square miles
17. What is the area of the kite shown below?

A 12 square units
B 24 square units
C 30 square units
D 36 square units

18. The apothem of a regular hexagon is $5\sqrt{3}$. Find the area of the hexagon.

F $75\sqrt{3}$
G $150\sqrt{3}$
H 300
J $300\sqrt{3}$

19. What is the area of the regular pentagon?

10 in.

A about 345 in.2
B about 180 in.2
C about 172.5 in.2
D about 90.5 in.2

20. What is the perimeter of the regular octagon?

8 cm

F about 18 cm
G about 39 cm
H about 49 cm
J about 118 cm
21. What is the area of the regular dodecagon?

A about 53.9 ft²
B about 107.9 ft²
C about 139.2 ft²
D about 171.1 ft²

22. The area of two similar pentagons are 48 in.² and 75 in.². What is the ratio of their sides?

F 16 : 25
G 1 : 3
H 4 : 5
J 48 : 75

23. Two equilateral triangles have sides of lengths 7 cm and 11 cm. What is the ratio of their perimeters?

A \(\frac{7}{11} \)
B \(\frac{7}{77} \)
C \(\frac{11}{77} \)
D \(\frac{49}{121} \)

24. The package of a model car states that the ratio of the length of the model to the length of a real car is 1 : 25. What is the ratio of the amount of paint required to cover the model to the amount required to cover the real car?

F 1 : 25
G 1 : 50
H 1 : 625
J 1 : 15,625

25. Find the area of sector TOP. Round your answer to the nearest tenth.

A 19.8 in.²
B 138.5 in.²
C 9.9 in.²
D 277.1 in.²

26. The radius of a circle is 63 cm. What is the length of an arc of 120°?

F 36.75\pi \text{ cm}
G 2315.35\pi \text{ cm}
H 73.5\pi \text{ cm}
J 42\pi \text{ cm}
27. The percent of each type of book sold yesterday is shown in the table. If this information were organized in a circle graph, what would be the measure of the central angle for romance?

<table>
<thead>
<tr>
<th>Book Type</th>
<th>% of Books</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mystery</td>
<td>19</td>
</tr>
<tr>
<td>Romance</td>
<td>10</td>
</tr>
<tr>
<td>Science</td>
<td>16</td>
</tr>
<tr>
<td>Fiction</td>
<td>42</td>
</tr>
<tr>
<td>Nonfiction</td>
<td>13</td>
</tr>
</tbody>
</table>

A. 72
B. 36
C. 18
D. 10

28. Assume that a dart you throw hits the dartboard shown and is equally likely to hit any spot on the board. Find the probability of hitting the shaded region.

29. A square dart board at a carnival has a target that is shaped like a regular hexagon. Since few players were winning, the size of the target was increased as shown. What is the probability that a dart that hits the new board lands on the target?

Old Board

New Board

A. 30%
B. 43%
C. 54%
D. 65%

30. Four circles, each of radius 7 inches, are packed in a square as shown. If you throw a dart and hit the square target, what is the probability that your dart will land inside one of the circles? Express your answer as a percent to the nearest tenth.

F. 67.5%
G. 78.5%
H. 75.0%
J. 50.0%
31. Find the number of faces in a polyhedron made up of 9 edges and 5 vertices using Euler’s formula.
 A 6
 B 7
 C 12
 D 14

32. Use Euler’s formula to find the number of edges in the polyhedron made up of 5 faces: 2 triangles and 3 rectangles.
 F 6
 G 7
 H 8
 J 9

33. Find the number of vertices in the polyhedron made up of 12 faces: 2 decagons and 10 rectangles.
 A 22
 B 20
 C 14
 D 12

34. Suppose you are building a storage box with a volume of 4368 cubic inches. The box will be 24 inches long. The height of the box will be 1 inch more than its width. Find the width of the box in inches.
 F 12 inches
 G 13 inches
 H 14 inches
 J 15 inches

35. The surface area of a cone is 600π square inches. If the lateral area of the cone is 375π square inches, what is the radius of the base?
 A 15 inches
 B 15π inches
 C 25 inches
 D 225π inches

36. Rhonda is blowing up a balloon. The radius r, in centimeters, of the balloon is given by $r = \sqrt[3]{45t}$, where t is the time in seconds since she began.

 Find the volume of the balloon after 20 seconds.
 F 972
 G 972π
 H 1200
 J 1200π
37. A given tangent to a sphere intersects how many great circles of the sphere?
 A 0
 B 1
 C 2
 D infinitely many

38. Jason bought a bowling ball that had a diameter of about 8.75 in. What is the surface area of the bowling ball rounded to the nearest tenth of a square inch?
 F 2806.2 in.²
 G 701.6 in.²
 H 350.8 in.²
 J 240.5 in.²

39. Points A and B are on sphere O. What is the best description of a segment with endpoints at A and B and that passes through the center of the sphere?
 A chord
 B secant
 C diameter
 D tangent