The Pythagorean Theorem and Its Converse

What You’ll Learn
• To use the Pythagorean Theorem
• To use the Converse of the Pythagorean Theorem

... And Why
To find the distance between two docks on a lake, as in Example 3

The Pythagorean Theorem

The well-known right triangle relationship called the Pythagorean Theorem is named for Pythagoras, a Greek mathematician who lived in the sixth century B.C. We now know that the Babylonians, Egyptians, and Chinese were aware of this relationship before its discovery by Pythagoras.

There are many proofs of the Pythagorean Theorem. You will see one proof in Exercise 48 and others later in the book.

A Pythagorean triple is a set of nonzero whole numbers \(a, b,\) and \(c\) that satisfy the equation \(a^2 + b^2 = c^2\). Here are some common Pythagorean triples.

- 3, 4, 5
- 5, 12, 13
- 8, 15, 17
- 7, 24, 25

If you multiply each number in a Pythagorean triple by the same whole number, the three numbers that result also form a Pythagorean triple.

New Vocabulary
• Pythagorean triple

Theorem 8-1

Pythagorean Theorem

In a right triangle, the sum of the squares of the lengths of the legs is equal to the square of the length of the hypotenuse.

A Pythagorean triple is a set of nonzero whole numbers \(a, b,\) and \(c\) that satisfy the equation \(a^2 + b^2 = c^2\). Here are some common Pythagorean triples.

- 3, 4, 5
- 5, 12, 13
- 8, 15, 17
- 7, 24, 25

If you multiply each number in a Pythagorean triple by the same whole number, the three numbers that result also form a Pythagorean triple.

Check Skills You’ll Need

Square the lengths of the sides of each triangle. What do you notice?

1. \(3^2 + 4^2 = 5^2\)
2. \(5^2 + 12^2 = 13^2\)
3. \(6^2 + 8^2 = 10^2\)
4. \(4^2 + 4^2 = (4\sqrt{2})^2\)

Advanced

1. \(3^2 + 4^2 = 5^2\)
2. \(5^2 + 12^2 = 13^2\)
3. \(6^2 + 8^2 = 10^2\)
4. \(4^2 + 4^2 = (4\sqrt{2})^2\)
2. Teach

Guided Instruction

1. **Teaching Tip**

 Let students know that Pythagorean triples often appear on standardized tests.

2. **Error Prevention**

 Some students may assume that the legs are always the known quantities. Point out that c is always the hypotenuse when applying the formula $a^2 + b^2 = c^2$ to a right triangle.

3. **Technology Tip**

 Students may wonder why they are asked to use a calculator in some exercises but not in other similar exercises. Tell them that real-world applications typically require decimal answers. Point out that radicals are exact, so they are preferred when exercises are of a purely mathematical nature.

Additional Examples

1. A right triangle has legs of length 16 and 30. Find the length of the hypotenuse. Do the lengths of the sides form a Pythagorean triple? Yes; 34

2. Find the value of x. Leave your answer in simplest radical form.

3. A baseball diamond is a square with 90-ft sides. Home plate and second base are at opposite vertices of the square. About how far is home plate from second base? About 127 ft

Pythagorean Triples

Find the length of the hypotenuse of $\triangle ABC$. Do the lengths of the sides of $\triangle ABC$ form a Pythagorean triple?

- $a^2 + b^2 = c^2$
- Use the Pythagorean Theorem.
- $21^2 + 20^2 = c^2$
- Substitute 21 for a and 20 for b.
- $441 + 400 = c^2$
- Simplify.
- $841 = c^2$
- Take the square root.
- $c = 29$

The length of the hypotenuse is 29. The lengths of the sides, 20, 21, and 29, form a Pythagorean triple because they are whole numbers that satisfy $a^2 + b^2 = c^2$.

Quick Check

1. A right triangle has a hypotenuse of length 25 and a leg of length 10. Find the length of the other leg. Do the lengths of the sides form a Pythagorean triple? No

2. Find the value of x. Leave your answer in simplest radical form.

3. The hypotenuse of a right triangle has length 12. One leg has length 6. Find the length of the other leg. Leave your answer in simplest radical form. $6\sqrt{3}$

Using Simplest Radical Form

Algebra Find the value of x. Leave your answer in simplest radical form (page 390).

- $a^2 + b^2 = c^2$ Pythagorean Theorem
- $8^2 + x^2 = 20^2$ Substitute.
- $64 + x^2 = 400$ Simplify.
- $x^2 = 336$ Subtract 64 from each side.
- $x = \sqrt{336}$ Take the square root.
- $x = \sqrt{16(21)}$ Simplify.
- $x = 4\sqrt{21}$

Quick Check

1. The hypotenuse of a right triangle has length 12. One leg has length 6. Find the length of the other leg. Leave your answer in simplest radical form. $6\sqrt{3}$

2. **Critical Thinking** When you want to know how far you have to paddle a boat, why is an approximate answer more useful than an answer in simplest radical form? You want to know the nearest whole number value, which may not be apparent in a radical expression.

Real-World Connection

Gridded Response The Parks Department rents paddle boats at docks near each entrance to the park. To the nearest meter, how far is it to paddle from one dock to the other?

- $a^2 + b^2 = c^2$ Pythagorean Theorem
- $250^2 + 350^2 = c^2$ Substitute.
- $185,000 = c^2$ Simplify.
- $c = \sqrt{185,000}$ Take the square root.
- $c = 430.1$ Use a calculator.

It is 430 m from one dock to the other.

Differentiated Instruction

Advanced Learners

Have students describe how a triangle whose sides form a Pythagorean triple and a triangle whose sides are a multiple of that triple are related. Students should recognize that they are similar triangles.

English Language Learners

Review the term *converse*, using the Pythagorean Theorem and its converse as an example. Then have students write the Pythagorean Theorem as a biconditional statement.

learning style: verbal

learning style: verbal
The Converse of the Pythagorean Theorem

You can use the Converse of the Pythagorean Theorem to determine whether a triangle is a right triangle. You will prove Theorem 8-2 in Exercise 58.

Theorem 8-2 Converse of the Pythagorean Theorem

If the square of the length of one side of a triangle is equal to the sum of the squares of the lengths of the other two sides, then the triangle is a right triangle.

EXAMPLE Is It a Right Triangle?

Is this triangle a right triangle?

\[c^2 \neq a^2 + b^2 \]

\[85^2 = 13^2 + 84^2 \]

Substitute the greatest length for \(c \).

\[7225 = 7225 \]

Simplify.

\[c^2 = a^2 + b^2 \]

so the triangle is a right triangle.

A triangle has sides of lengths 16, 48, and 50. Is the triangle a right triangle?

no

You can also use the squares of the lengths of the sides of a triangle to find whether the triangle is acute or obtuse. The following two theorems tell how.

Theorem 8-3

If the square of the length of the longest side of a triangle is greater than the sum of the squares of the lengths of the other two sides, the triangle is obtuse.

If \(c^2 > a^2 + b^2 \), the triangle is obtuse.

Theorem 8-4

If the square of the length of the longest side of a triangle is less than the sum of the squares of the lengths of the other two sides, the triangle is acute.

If \(c^2 < a^2 + b^2 \), the triangle is acute.

EXAMPLE Classifying Triangles as Acute, Obtuse, or Right

Classify the triangle whose side lengths are 6, 11, and 14 as acute, obtuse, or right.

\[14^2 = 6^2 + 11^2 \]

Compare \(c^2 \) to \(a^2 + b^2 \). Substitute the greatest length for \(c \).

\[196 = 36 + 121 \]

\[196 > 157 \]

Since \(c^2 > a^2 + b^2 \), the triangle is obtuse.

A triangle has sides of lengths 7, 8, and 9. Classify the triangle by its angles.

acute

Guided Instruction

Technology Tip

Have students use geometry software to explore and demonstrate the theorems. If \(c^2 > a^2 + b^2 \), the triangle is obtuse and if \(c^2 < a^2 + b^2 \), the triangle is acute. Direct students to keep \(a \) and \(b \) constant while manipulating \(c \) by altering the angle opposite \(c \).

Error Prevention

Remind students that \(c \) must be the longest side of the triangle for the comparison of \(c^2 \) and \(a^2 + b^2 \) to give a valid triangle classification. Also, students should use the Triangle Inequality Theorem to check that \(a + b > c \) so that the side lengths form a triangle.

Additional Examples

4. Is this triangle a right triangle?

no

3. The numbers represent the lengths of the sides of a triangle. Classify each triangle as acute, obtuse, or right.

 a. 15, 20, 25 right
 b. 10, 15, 20 obtuse

Resources

- Daily Notetaking Guide 8-1
- Daily Notetaking Guide 8-1—Adapted Instruction

Closure

The area of \(\triangle ABC \) is 20 ft\(^2\). Find \(AC \) and \(BC \). Leave your answer in simplest radical form.

\[AC = 2\sqrt{5} \text{ ft}; \ BC = 4\sqrt{5} \text{ ft} \]
Find the value of x.

1. $x = 6 \div 8 = 0.75$
2. $x = 24 \div 25 = 0.96$
3. $x = 16 \div 34 = 0.47$
4. $x = 20 \div 20 = 1$
5. $x = 97 \div 72 = 1.35$
6. $x = 16 \div 17 = 0.94$

Does each set of numbers form a Pythagorean triple? Explain.

7. $4, 5, 6$ no; $4^2 + 5^2 = 41$;
8. $10, 24, 26$ yes; $10^2 + 24^2 = 676 = 26^2$
9. $15, 20, 25$ yes; $15^2 + 20^2 = 625 = 25^2$

Example 2
Algebra Find the value of x. Leave your answer in simplest radical form.

10. $\sqrt{41}$
11. $\sqrt{33}$
12. $\sqrt{11}$
13. $2\sqrt{89}$
14. $3\sqrt{2}$
15. $5\sqrt{2}$

Example 3
Home Maintenance A painter leans a 15-ft ladder against a house. The base of the ladder is 5 ft from the house.

14.1 ft a. To the nearest tenth of a foot, how high on the house does the ladder reach? b. The ladder in part (a) reaches too high on the house. By how much should the painter move the ladder’s base away from the house to lower the top by 1 ft? about 2.3 ft

17. A walkway forms the diagonal of a square playground. The walkway is 24 m long. To the nearest tenth of a meter, how long is a side of the playground? 17.0 m

Example 4
Is each triangle a right triangle? Explain.

18. no; $8^2 + 24^2 = 680$.
19. yes; $33^2 + 56^2 = 65^2$.

Example 5
The lengths of the sides of a triangle are given. Classify each triangle as acute, right, or obtuse.

20. $19^2 + 20^2 = 681$.
21. $4, 5, 6$ acute
22. $0.3, 0.4, 0.6$ obtuse
23. $11, 12, 15$ acute
24. $\sqrt{3}, 2, 3$ obtuse
25. $30, 40, 50$ right
26. $\sqrt{11}, \sqrt{7}, 4$ acute

EXERCISES
For more exercises, see Extra Skill, Word Problem, and Proof Practice.
Apply Your Skills

30. Answers may vary. Sample: Have three people hold the rope 3 units, 4 units, and 5 units apart in the shape of a triangle.

31. Multiple Choice Which triangle is not a right triangle? B

32. Embroidery You want to embroider a square design. You have an embroidery hoop with a 6 in. diameter. Find the largest value of \(r \) so that the entire square will fit in the hoop. Round to the nearest tenth. 4.2 in.

33. In parallelogram \(RSTW \), \(RS = 7, ST = 24 \), and \(RT = 25 \). Is \(RSTW \) a rectangle? Explain. Yes; \(7^2 + 24^2 = 25^2 \), so \(\triangle RST \) is a rt. \(\angle \).

34. Coordinate Geometry You can use the Pythagorean Theorem to prove the Distance Formula. Let points \(P(x_1, y_1) \) and \(Q(x_2, y_2) \) be the endpoints of the hypotenuse of a right triangle.
 a. Write an algebraic expression to complete each of the following: \(PR = \) \(QR = \) \(\sqrt{[x_2 - x_1]^2 + [y_2 - y_1]^2} \)
 b. By the Pythagorean Theorem, \(PQ = PR^2 + QR^2 \). Rewrite this statement substituting the algebraic expressions you found for \(PR \) and \(QR \) in part (a).
 c. Complete the proof by taking the square root of each side of the equation that you wrote in part (b). \(PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \)

35. Constructions Explain how to construct a segment of length \(\sqrt{n} \), where \(n \) is any positive integer, and you are given a segment of length 1. (Hint: See the diagram.) See margin.

Find a third whole number so that the three numbers form a Pythagorean triple.

36. 20, 21 29
37. 14, 48 50
38. 13, 85 84
39. 12, 37 35

Error Prevention!

Exercise 28 Students may think the triangle with side lengths \(x, 4\sqrt{5} \), and 20 is a right triangle. Point out that there is no right angle symbol in the large triangle. Students must use the Pythagorean Theorem twice, first to find the side of the smallest triangle, and then to find the hypotenuse of the triangle with base 16.

Exercise 31 Show students how to use Pythagorean triples to check for right triangles. For answer choice A, they can multiply each side by 10 to get sides of 6, 8 and 10. They should recognize this as a multiple of a 3, 4, 5 triangle. Similarly, by dividing each side in answer choice B by \(\sqrt{5} \), students can recognize that the triangle cannot be a right triangle.

Exercise 44 Some students may be unfamiliar with the terms embroidery and embroidery hoop. Ask a volunteer to bring embroidery materials and an embroidery hoop to class and demonstrate how to use the hoop.

35. Answers may vary. Sample: Using 2 segments of length 1, construct the hyp. of the right \(\triangle \) formed by these segments. Using the hyp. found as one leg and a segment of length 1 as the other leg, construct the hyp. of the \(\triangle \) formed by those legs. Continue this process until constructing a hypotenuse of length \(\sqrt{n} \).
48. Prove the Pythagorean Theorem.

Given: \(\triangle ABC \) is a right triangle

Prove: \(a^2 + b^2 = c^2 \)

(Hint: Begin with proportions suggested by Theorem 7-3 or its corollaries.)

49. **Astronomy** The Hubble Space Telescope is orbiting Earth 600 km above Earth’s surface. Earth’s radius is about 6370 km. Use the Pythagorean Theorem to find the distance \(x \) from the telescope to Earth’s horizon. Round your answer to the nearest ten kilometers.

2830 km

The figures below are drawn on centimeter grid paper. Find the perimeter of each shaded figure to the nearest tenth.

50. 12 cm 51. 12.5 cm 52. 17.9 cm

53a. Answers may vary. Sample: \(n = 6; 12, 35, 37 \)

53c. \((2n)^2 + (n^2 - 1)^2 = 4n^2 + n^4 - 2n^2 + 1 = n^4 + 2n^2 + 1 = (n^2 + 1)^2 \)

Challenge

53c. Find integers \(j \) and \(k \) so that (a) the two given integers \(j \) and \(k \) represent the lengths of the sides of an acute triangle and (b) the two given integers \(j \) and \(k \) represent the lengths of the sides of an obtuse triangle.

45. 3, 4, 5 46. 5, 12, 13 47. 8, 15, 17 48. 7, 24, 25

54. **Geometry in 3 Dimensions** The box at the right is a rectangular solid.

a. Use \(\triangle ABC \) to find the length \(d_1 \) of the diagonal of the base. 5 in.

b. Use \(\triangle ABD \) to find the length \(d_2 \) of the diagonal of the box. \(\sqrt{29} \) in.

c. You can generalize the steps in parts (a) and (b).

Use the facts that \(AC^2 + BC^2 = d_1^2 \) and \(d_1^2 + BD^2 = d_2^2 \) to write a one-step formula to find \(d_2 \).

d. Use the formula you wrote to find the length of the longest fishing pole you can pack in a box with dimensions 18 in., 24 in., and 16 in. 34 in.

Geometry in 3 Dimensions Points \(P(x_1, y_1, z_1) \) and \(Q(x_2, y_2, z_2) \) at the left are points in a three-dimensional coordinate system. Use the following formula to find \(PQ \). Leave your answer in simplest radical form.

\[d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} \]

55. \(P(0, 0, 0), Q(1, 2, 3) \) 56. \(P(0, 0, 0), Q(-3, -4, -6) \) 57. \(P(-1, 3, 5), Q(2, 1, 7) \)
58. Use the plan and write a proof of Theorem 8-2, the Converse of the Pythagorean Theorem.

Given: \(\triangle ABC \) with sides of length \(a, b, \) and \(c \) where \(a^2 + b^2 = c^2 \)

Prove: \(\triangle ABC \) is a right triangle.

Plan: Draw a right triangle (not \(\triangle ABC \)) with legs of lengths \(a \) and \(b \). Label the hypotenuse \(x \). By the Pythagorean Theorem, \(a^2 + b^2 = x^2 \). Use substitution to compare the lengths of the sides of your triangle and \(\triangle ABC \). Then prove the triangles congruent. See margin.

59. The lengths of the legs of a right triangle are 17 m and 20 m. To the nearest tenth of a meter, what is the length of the hypotenuse? 26.2

60. The hypotenuse of a right triangle is 34 ft. One leg is 16 ft. Find the length of the other leg in feet. 30

61. What whole number forms a Pythagorean triple with 40 and 41? 9

62. The two shorter sides of an obtuse triangle are 20 and 30. What is the least whole number length possible for the third side? 37

63. Each leg of an isosceles right triangle has measure 10 cm. To the nearest tenth of a centimeter, what is the length of the hypotenuse? 14.1

64. The legs of a right triangle have lengths 3 and 4. What is the length, to the nearest tenth, of the altitude to the hypotenuse? 2.7

Test Prep

A sheet of blank grids is available in the Test-Taking Strategies with Transparencies booklet. Give this sheet to students for practice with filling in the grids.

Resources
For additional practice with a variety of test item formats:
- Standardized Test Prep, p. 465
- Test-Taking Strategies, p. 460
- Test-Taking Strategies with Transparencies

58. Draw right \(\triangle FDE \) with legs \(DE \) of length \(a \) and \(EF \) of length \(b \), and hyp. of length \(x \). Then \(a^2 + b^2 = x^2 \) by the Pythagorean Thm. We are given \(\triangle ABC \) with sides of length \(a, b, c \) and \(a^2 + b^2 = c^2 \). By subst., \(c^2 = x^2 \), so \(c = x \). Since all side lengths of \(\triangle ABC \) and \(\triangle FDE \) are the same, \(\triangle ABC \equiv \triangle FDE \) by SSS. \(\angle C \equiv \angle E \) by CPCTC, so \(m\angle C = 90 \). Therefore, \(\triangle ABC \) is a right \(\triangle \).